Neural Network Learning: Theoretical Foundations Chapter 20,21

IDEA Seminar Speaker: Dongha Kim

Department of Statistics, Seoul National University, South Korea

November 29, 2017

① Chapter 20: Convex Classes

2 Chapter 21: Other Learning Problems

① Chapter 20: Convex Classes

2 Chapter 21: Other Learning Problems

Lower and Upper bounds on sample complexity

- In chapter 19, there is a considerable gap between our lower and upper bounds on sample complexity.
- The sample complexity of any learning algorithm for a class F satisfies

$$m(\epsilon, \delta, B) = \Omega\left(\frac{1}{\epsilon} + \text{fat}_F(4\epsilon)\right).$$

 And there is a learning algorithm(approximate-SEM) with sample complexity

$$m(\epsilon, \delta, B) = O\left(\frac{1}{\epsilon^2} \left(\operatorname{fat}_F(\epsilon/256) \log^2 \left(\frac{1}{\epsilon}\right) \right) \right).$$

✓ There are function classes demonstrating that both rates are possible.

Main results of this chapter

- 1 If a function class F is *almost convex*, the sample complexity of this class is of order $1/\epsilon$.
- 2 And if F is not *almost convex*, the sample complexity in this case is of order at least $1/\epsilon^2$

What is *almost convex*?

Definition 20.1 For a probability distribution P_X on X, define the norm induced by P_X on the set of functions $f: X \to \mathbb{R}$ as

$$||f|| = \left(\int_X f^2(x) dP_X(x)\right)^{1/2}.$$

For a class F of real-valued functions defined on a set X and a probability distribution P_X on X, let \bar{F} denote the closure of F with respect to this norm. We say that such a class F is closure convex if, for all probability distributions P_X on X, \bar{F} is convex.

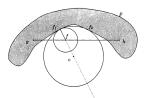
Lower bounds for non-convex classes

Main theorem 1.

Theorem 20.2 For every class F that is not closure convex, there is a positive constant k and a bound B' such that for all $0 < \delta < 1$, all sufficiently small $\epsilon > 0$, all $B \ge B'$, and all learning algorithms L for F, the sample complexity satisfies

$$m_L(\epsilon, \delta, B) \ge \frac{k \ln(1/\delta)}{\epsilon^2}.$$

Proof)



• This is enough to show that, by positioning E(y|x) inside the ball approximately equidistant from f_1 and f_2 , we can make the learning problem as the problem of estimating the probability of a Bernoulli random variable.

Lower bounds for non-convex classes

Lemma 5.1 Suppose that α is a random variable uniformly distributed on $\{\alpha_-, \alpha_+\}$, where $\alpha_- = 1/2 - \epsilon/2$ and $\alpha_+ = 1/2 + \epsilon/2$, with $0 < \epsilon < 1$. Suppose that ξ_1, \ldots, ξ_m are i.i.d. (independent and identically distributed) $\{0,1\}$ -valued random variables with $\Pr(\xi_i = 1) = \alpha$ for all

i. Let f be a function from $\{0,1\}^m$ to $\{\alpha_-,\alpha_+\}$. Then

$$\Pr\left(f(\xi_1,\ldots,\xi_m)\neq\alpha\right)>\frac{1}{4}\left(1-\sqrt{1-\exp\left(\frac{-2\lceil m/2\rceil\epsilon^2}{1-\epsilon^2}\right)}\right). \quad (5.1)$$

Hence, if this probability is no more than δ , where $0 < \delta < 1/4$, then

$$m \ge 2 \left\lfloor \frac{1 - \epsilon^2}{2\epsilon^2} \ln \left(\frac{1}{8\delta(1 - 2\delta)} \right) \right\rfloor.$$
 (5.2)

2-layered networks class is not convex

• Consider the class F_k of two-layer networks, with a linear output unit and k first-layer computation units, each with the standard sigmoid activation function, $\sigma(\alpha) = 1/(1 + e^{-\alpha})$.

Theorem 20.5 For any $k \in \mathbb{N}$, the class F_k is not convex, even if the input space is $X = \mathbb{R}$.

• As a result, if the parameters are restricted to any compact set, the sample complexity of this class grows as $\log(1/\delta)/\epsilon^2$.

Upper Bounds for Convex Classes

Main theorem 2.

Theorem 20.7 Suppose F is a closure convex class of functions that map to the interval [0,1], A is an approximate-SEM algorithm for F, and L(z) = A(z,1/m) for $z \in Z^m$. Suppose that the distribution P on $X \times \mathbb{R}$ is such that $|f(x) - y| \leq B$ almost surely. Then

$$\mathcal{P}^{m}\left\{\operatorname{er}_{P}(L(z)) \geq \inf_{f \in P} \operatorname{er}_{P}(f) + \epsilon\right\}$$

$$\leq 6 \mathcal{N}_{1}\left(\frac{\epsilon}{96B^{3}}, F, 2m\right) \exp\left(-\frac{\epsilon m}{5216B^{4}}\right).$$

Hence, if F has finite fat-shattering dimension, then L is a learning algorithm with

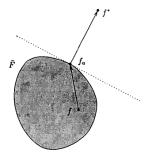
$$m_L(\epsilon, \delta) = O\left(\frac{B^4}{\epsilon} \left(d \ln^2\left(\frac{B}{\epsilon}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right),$$

where $d = \operatorname{fat}_F\left(\epsilon/(768B^3)\right)$. Furthermore, if $d = \operatorname{Pdim}(F)$ is finite, L is a learning algorithm, and

$$m_L(\epsilon, \delta) = O\left(\frac{B^4}{\epsilon} \left(d \ln \left(\frac{B}{\epsilon}\right) + \ln \left(\frac{1}{\delta}\right)\right)\right).$$

Upper Bounds for Convex Classes

Proof)



• Set $g = l_f - l_{f_a}$ where $l_f = (y - f(x))^2$ and apply the following lemma.

Upper Bounds for Convex Classes

Proof(cont.))

Lemma 20.8 Fix constants $K_1 > 0$ and $K_2 \ge 1$. Consider a class G of real functions defined on a set Z, and suppose that for every $g \in G$ and every $z \in Z$, $|g(z)| \le K_1$. Let P be a probability distribution on Z for which $Eg(z) \ge 0$ and $E(g(z))^2 \le K_2 Eg(z)$ for all g in G. Then for $\epsilon > 0$, $0 < \alpha \le 1/2$ and $m \ge \max \left\{ 4(K_1 + K_2)/(\alpha^2 \epsilon), K_1^2/(\alpha^2 \epsilon) \right\}$,

$$\begin{split} P^m \left\{ \exists g \in G, \frac{\mathbf{E}g - \hat{\mathbf{E}}_{z}g}{\mathbf{E}g + \epsilon} \geq \alpha \right\} \\ &\leq 2\mathcal{N}_1 \left(\frac{\alpha \epsilon}{8}, G, 2m \right) \exp\left(-\frac{3\alpha^2 \epsilon m}{8K_1 + 324K_2} \right) + \\ &4\mathcal{N}_1 \left(\frac{\alpha \epsilon}{8K_1}, G, 2m \right) \exp\left(-\frac{\alpha^2 \epsilon m}{4K_1^2} \right), \end{split}$$

where $\hat{\mathbf{E}}_{z}g = \frac{1}{m} \sum_{i=1}^{m} g(z_{i})$ for $z = (z_{1}, ..., z_{m})$.

Restricted model

• If the conditional expectation $E(y|x) \in F$, the rate of uniform convergence is the same as the fast rate achieved by convex classes.

Theorem 20.10 Suppose that F is a class of functions that map to the interval [0,1], \mathcal{A} is an approximate-SEM algorithm for F, $L(z) = \mathcal{A}(z,1/m)$ for $z \in Z^m$, and the distribution P on $X \times \mathbb{R}$ is such that $|f(x) - y| \leq B$ almost surely and $\mathbf{E}(y|x)$ is in F. Then

$$\mathcal{P}^{m}\left\{\operatorname{er}_{P}(L(z)) \geq \inf_{f \in F} \operatorname{er}_{P}(f) + \epsilon\right\}$$

$$\leq 6 \mathcal{N}_{1}\left(\frac{\epsilon}{96B^{3}}, F, 2m\right) \exp\left(-\frac{\epsilon m}{5216B^{4}}\right).$$

Chapter 20: Convex Classes

2 Chapter 21: Other Learning Problems

Loss Functions in General

- We shall assume that the loss function l maps to the interval [0,1]. (ex: $Y \in [0,1]$)
- Given a particular loss function l, we define, for $f \in F$, the function $l_f: X \times Y \to [0,1]$ by

$$l_f(x,y) = l(f(x),y),$$

and we let $l_F = \{l_f : f \in F\}$ be the corresponding loss class.

 The l-error of f∈ F with repect to a distribution P on Z = X × Y is the expected value of l_f with respect to P,

$$er_P^l(f) = El_f = El(f(x), y),$$

and, for $z \in \mathbb{Z}^m$, the l-sample error $\hat{er}_z^l(f)$ is

$$\hat{er}_z^l(f) = \frac{1}{m} \sum_{i=1}^m l_f(x_i, y_i) = \frac{1}{m} \sum_{i=1}^m l(f(x_i), y_i).$$

Convergence for General Loss Functions

Theorem 17.1 Suppose that F is a set of functions defined on a domain X and mapping into the real interval [0,1]. Let P be any probability distribution on $Z = X \times [0,1]$, ϵ any real number between 0 and 1, and m any positive integer. Then

$$P^{m} \left\{ some \ f \ in \ F \ has \left| \operatorname{er}_{P}(f) - \hat{\operatorname{er}}_{z}(f) \right| \geq \epsilon \right\}$$

$$\leq 4 \mathcal{N}_{1} \left(\epsilon / 16, F, 2m \right) \exp \left(-\epsilon^{2} m / 32 \right).$$

Theorem 21.1 Suppose that F is a class of functions mapping into the interval [0,1], and that $\ell:[0,1]\times Y\to [0,1]$ is a loss function. Let P be any probability distribution on $Z=X\times Y$, $0<\epsilon<1$, and m any positive integer. Then

$$P^{m}\left\{|\operatorname{er}_{F}^{\ell}(h) - \operatorname{\acute{e}r}_{z}^{\ell}(h)| \geq \epsilon \text{ for some } h \in F\right\}$$

$$\leq 4 \mathcal{N}_{1}\left(\frac{\epsilon}{8}, \ell_{F}, 2m\right) \exp\left(-\frac{\epsilon^{2}m}{32}\right).$$

Corollary 21.2 Let ℓ denote the absolute loss function. Then, for all positive integers k and for all positive numbers ϵ ,

$$\mathcal{N}_1(\epsilon, \ell_F, k) \leq \mathcal{N}_1(\epsilon, F, k).$$

- Suppose that F maps from a set X into \mathbb{R}^s where s > 1.
- It would seem appropriate to use the loss function $l^s: \mathbb{R}^s \times \mathbb{R}^s \to [0,1]$, as follows:

$$l^{s}(y, y') = \frac{1}{s} \sum_{i=1}^{s} l(y_{i}, y'_{i}).$$

 For instance, l^s measures the loss as the average quadratic loss over the outputs,

$$l^{s}(y, y') = \frac{1}{s} \sum_{i=1}^{s} (y_{i} - y'_{i})^{2}.$$

- For $1 \le s \le s$ and $f \in F$, let $f_i(x) = (f(x))_i$, the *i*th entry of $f(x) \in \mathbb{R}^s$, and let $F_i = \{f_i : f \in F\}$.
- For $f \in F$, we define $l_{f_i} : \mathbb{R}^s \times \mathbb{R}^s \to [0,1]$ by $l_{f_i}(x,y) = l(f_i(x),y)$ and we let $l_{F_i} = \{l_{f_i}, f \in F\}$.

Learning in Multiple-Output Networks

Theorem 21.3 With the above notations,

$$\begin{array}{lcl} \mathcal{N}_{1}\left(\epsilon,\ell_{F}^{s},k\right) & \leq & \mathcal{N}_{1}\left(\epsilon,\ell_{F_{1}},k\right)\mathcal{N}_{1}\left(\epsilon,\ell_{F_{2}},k\right)\cdots\mathcal{N}_{1}\left(\epsilon,\ell_{F_{s}},k\right) \\ & = & \prod_{i=1}^{s}\mathcal{N}_{1}\left(\epsilon,\ell_{F_{i}},k\right), \end{array}$$

for all positive integers k and all $\epsilon > 0$.

Corollary 21.4 If ℓ is the quadratic loss function then

$$\mathcal{N}_{1}\left(\epsilon, \ell_{F}^{s}, k\right) \leq \mathcal{N}_{1}\left(\frac{\epsilon}{2}, F_{1}, k\right) \mathcal{N}_{1}\left(\frac{\epsilon}{2}, F_{2}, k\right) \cdots \mathcal{N}_{1}\left(\frac{\epsilon}{2}, F_{s}, k\right) \\
= \prod_{i=1}^{s} \mathcal{N}_{1}\left(\frac{\epsilon}{2}, F_{i}, k\right),$$

for all positive integers k and all $\epsilon > 0$. If ℓ is the absolute loss function, then

$$\mathcal{N}_1\left(\epsilon, \ell_F^s, k\right) \leq \prod_{i=1}^s \mathcal{N}_1\left(\epsilon, F_i, k\right)$$

for all ϵ and k.

Learning in Multiple-Output Networks

Theorem 21.5 Suppose that a feed-forward network N has W weights and k computation units arranged in L layers, where s of these computation units are output units. Suppose that each computation unit has a fixed piecewise-polynomial activation function with p pieces and degree no more than l. Let F be the class of functions computed by N. Then any approximate-SEM algorithm for F can be used to define a learning algorithm for F, and for fixed p and l, the sample complexity of this algorithm is

$$O\left(\frac{1}{\epsilon^2}\left(s\left(WL\ln W + WL^2\right)\ln\left(\frac{1}{\epsilon}\right) + \ln\left(\frac{1}{\delta}\right)\right)\right).$$

Theorem 21.6 Consider the class of two-layer networks defined in Corollary 14.16, but with s output units. These networks have inputs in $[-A,A]^n$, and each computation unit has a bound V on the sum of the magnitudes of the associated parameters, and an activation function that is bounded and satisfies a Lipschitz constraint. Let F be the class of vector-valued functions computed by this network. Any approximate-SEM algorithm can be used to define a learning algorithm L for F that has sample complexity satisfying

$$m_L(\epsilon,\delta) = O\left(\frac{1}{\epsilon^2}\left(\frac{sV^6A^2}{\epsilon^4}\ln n + \ln\left(\frac{1}{\delta}\right)\right)\right).$$

 In this section, we take a fresh approach to the question of how to extend a basic learning model of Part I for binary classification to models of learning applicable to real-valued function classes.

Theorem 4.8 Suppose that H is a set of functions from a set X to $\{0,1\}$ and that H has finite Vapnik-Chervonenkis dimension $d \geq 1$. Let L be a consistent algorithm; that is, for any m and for any $t \in H$, if $x \in X^m$ and z is the training sample corresponding to x and t, then the hypothesis h = L(z) satisfies $h(x_i) = t(x_i)$ for i = 1, 2, ..., m. Then L is a learning algorithm for H in the restricted model, with sample complexity

$$m_L(\epsilon,\delta) \leq \frac{4}{\epsilon} \left(d \ln \left(\frac{12}{\epsilon} \right) + \ln \left(\frac{2}{\delta} \right) \right)$$

• Therefore, there is $m(\epsilon, \delta)$ such that for $m \ge m(\epsilon, \delta)$, for any probability distribution μ in X and any function $t \in H$, the following holds:

$$P^m \text{ (for any function } f \text{ such that } f(x_i) = t(x_i) \text{ for } i=1,...,m,$$

$$\mu\{f(x) = t(x)\} > 1-\epsilon) > 1-\delta.$$

Real-valued problem

- We extend in two different ways the restricted model of learning for {0,1}-classes.
- Suppose t is any function from X to [0,1] (not necessarily in the class F), and μ is a probability distribution on X.
- In real-valued problem, we replace the condition f(x) = t(x) to $|f(x) t(x)| < \eta$.

Definition 21.7 Suppose that F is a class of functions mapping from a set X to the interval [0,1]. Then F strongly generalizes from approximate interpolation if for any $\epsilon, \delta, \eta \in (0,1)$, there is $m_0(\epsilon, \delta, \eta)$ such that for $m \geq m_0(\epsilon, \delta, \eta)$, for any probability distribution μ in X and any function $t: X \to [0,1]$, the following holds: with probability at least $1-\delta$, if $x=(x_1,x_2,\ldots,x_m)\in X^m$, then for any $f\in F$ satisfying $|f(x_i)-t(x_i)|<\eta$ for $i=1,2,\ldots,m$, we have

$$\mu\left\{x:|f(x)-t(x)|<\eta\right\}>1-\epsilon.$$

Definition 21.8 Suppose that F is a class of functions mapping from a set X to the interval [0,1]. Then F generalizes from approximate interpolation if for any $\epsilon, \delta, \eta, \gamma \in (0,1)$, there is $m_0(\epsilon, \delta, \eta, \gamma)$ such that for $m \geq m_0(\epsilon, \delta, \eta, \gamma)$, for any probability distribution μ in X and any function $t: X \to [0,1]$, the following holds: with probability at least $1-\delta$, if $x=(x_1,x_2,\ldots,x_m)\in X^m$, then for any $f\in F$ satisfying $|f(x_i)-t(x_i)|<\eta$ for $i=1,2,\ldots,m$, we have

$$\mu\left\{x:|f(x)-t(x)|<\eta+\gamma\right\}>1-\epsilon.$$

Strong generalization from interpolation

Theorem 21.12

Suppose that F is a set of functions from a set X to [0,1]. Then F strongly generalizes from approximate interpolation if and only if F has finite pseudo-dimension. Furthermore, if F has finite pseudo-dimension $\operatorname{Pdim}(F)$ then a sufficient sample length function for generalization from approximate interpolation is

$$m_0(\epsilon, \delta, \eta) = \frac{4}{\epsilon} \left(15 \operatorname{Pdim}(F) \ln \left(\frac{12}{\epsilon} \right) + \ln \left(\frac{2}{\delta} \right) \right),$$

and any suitable sample length function must satisfy

$$m_0(\epsilon, \delta, \eta) \ge \frac{1}{24\epsilon} \left(\frac{\operatorname{Pdim}(F)}{2\ln(2/\eta)} - 1 + 6\ln\left(\frac{1}{\delta}\right) \right)$$

for all $\eta > 0$, $\epsilon \in (0, 1/2)$ and $\delta \in (0, 1)$.

Generalization from interpolation

Theorem 21.14 Suppose that F is a class of functions mapping into [0,1]. Then F generalizes from approximate interpolation if and only if F has finite fat-shattering dimension. Furthermore, there is a constant c such that if F has finite fat-shattering dimension, then a sufficient sample length for generalization from approximate interpolation is

$$m_0(\epsilon, \delta, \gamma, \eta) = \frac{c}{\epsilon} \left(\ln \left(\frac{1}{\delta} \right) + \operatorname{fat}_F \left(\frac{\gamma}{8} \right) \ln^2 \left(\frac{\operatorname{fat}_F (\gamma/8)}{\gamma \epsilon} \right) \right).$$

A result on large margin classification

- It is possible to use our results on generalization from approximate interpolation to derive a result useful for a restricted form of the classification learning model of Part 2.
- Recall that in this framework, for a probability distribution P on $X \times \{0, 1\}$, a positive number γ , and $f \in F$, we define

$$er_P^{\gamma}(f) = P\{ margin(f(x), y) < \gamma \}.$$

• In Chapter 10, we proved the following convergence result:

$$P^{m}\{\text{some } f \text{ in } F \text{ has } er_{P}(f) \geq \hat{er}_{z}^{\gamma}(f) + \epsilon\}$$

$$\leq 2\mathcal{N}_{\infty}\left(\frac{\gamma}{2}, F, 2m\right) \exp\left(-\frac{\epsilon^{2}m}{8}\right).$$

A result on large margin classification

Theorem 21.15 Suppose that F is a set of functions mapping from a set X to [0,1], that $t: X \to \{0,1\}$, and that μ is a probability distribution on X. Let $\gamma \in (0,1/2]$ and $\epsilon \in (0,1)$. For $f \in F$, define $\operatorname{er}_{\mu}(f,t)$ to be $\mu \{x: \operatorname{sgn}(f(x)-1/2) \neq t(x)\}$, the error incurred in using the function f for binary classification. Let P_{bad} be the probability of $x \in X^m$ for which some $f \in F$ has $\operatorname{margin}(f(x_i), t(x_i)) > \gamma$ for $i = 1, \ldots, m$, but $\operatorname{er}_{\mu}(f,t) \geq \epsilon$. Then $P_{\text{bad}} \leq 2 \mathcal{N}_{\infty}(\gamma/2, F, 2m) 2^{-\epsilon m/2}$.

- the above result is similar to this, but is more specialized in two ways:
 - · restricted model.
 - $er_{\mu}(f) \geq \epsilon$ and $\hat{er}_{\mu}^{\gamma}(f) = 0$, not $er_{P}(f) \geq \hat{er}_{z}^{\gamma}(f) + \epsilon$.