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Lower and Upper bounds on sample complexity

e In chapter 19, there is a considerable gap between our lower and upper
bounds on sample complexity.

e The sample complexity of any learning algorithm for a class F' satisfies
1
m(e, 6, B) = Q ( +fatp(4e)> .
€

e And there is a learning algorithm(approximate-SEM) with sample
complexity

m(e,5,B) = O (612 (fatp(e/256) log? (i))) .

v There are function classes demonstrating that both rates are possible.
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Main results of this chapter

1 If a function class F' is almost convex, the sample complexity of this
class is of order 1/e.

2 And if F is not almost convex, the sample complexity in this case is of
order at least 1/¢2
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What is almost convex?

Definition 20.1 For a probability distribution Px on X, define the
norm induced by Px on the set of functions f: X = R as

Il = ( [ 7@ dPx(z)) "

For a class F of real-valued functions defined on a set X and a probability
distribution Px on X, let F' denote the closure of F with respect to this
norm. We say that such a class F is closure convex if, for all probability
distributions Px on X, F' is convez.
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Lower bounds for non-convex classes

Main theorem 1.

Theorem 20.2 For every class F that is not closure convez, there is
a positive constant k and a bound B' such that for all 0 < 6 < 1, all
sufficiently small e > 0, all B > B', and all learning algorithms L for
F, the sample complezity satisfies

mL(e,J, B) 2

kn(1/5)
K/,

Proof)

o This is enough to show that, by positioning F(y|z) inside the ball
approximately equidistant from f7 and f,, we can make the learning
problem as the problem of estimating the probability of a Bernoulli
random variable.
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Lower bounds for non-convex classes

Lemma 5.1 Suppose that a is a random variable uniformly distributed
on {a_,ay}, where a_ = 1/2 — ¢/2 and ay = 1/2+ €2, with 0 <
€ < 1. Suppose that £,...,£m are ii.d. (independent and identically
distributed) {0, 1}-valued random variables with Pr(&; = 1) = a for all

i. Let f be a function from {0,1}™ to {a—,ay}. Then

Pr(f(E, e bm) £0) > § (1 *\/I-W(M)) . (51)

1-¢2

Hence, if this probability is no more than &, where 0 < § < 1/4, then

m>2 l%ln (Eml_—m)J . (5.2)
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2-layered networks class is not convex

o Consider the class Fj, of two-layer networks, with a linear output unit
and k first-layer computation units, each with the standard sigmoid
activation function, o(a) = 1/(1 + e~ ).

Theorem 20.5 For any k € N, the class F}, is not convez, even if the
input space is X = R.

e As aresult, if the parameters are restricted to any compact set, the
sample complexity of this class grows as log(1/d)/e2.
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Upper Bounds for Convex Classes

Main theorem 2.

Theorem 20.7 Suppose F is a closure convex class of functions that
map to the interval [0,1)], A is an approzimate-SEM algorithm for F,
and L(z) = A(z,1/m) for z € Z™. Suppose that the distribution P on
X xR is such that | f(z) — y| < B almost surely. Then

pm {HP(L(z)) 2 inf erp(f) + e}

< M (goms Bs,F,2m) exp (-%) .

Hence, if F has finite fat-shattering dimension, then L is a learning
algorithm with

wicr=0(2 o (2w (}))

where d = fatp (¢/(7688%)). Furthermore, if d = Pdim(F) is finite, L
is a learning algorithm, and

wir=o(? (n(2) ox(3))
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Upper Bounds for Convex Classes

Proof)

e Setg =1y — 1y, wherel; = (y — f(z))? and apply the following
lemma.
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Upper Bounds for Convex Classes

Proof(cont.))

Lemma 20.8 Fiz constants Ky > 0 and Ky > 1. Consider a class G
of real functions defined on a set Z, and suppose that for every g-€ G
and every z € Z, |g(2)| < Ki. Let P be a probability distribution on Z
for which Eg(z) > 0 and E(g(z))? < K:Eg(z) for all g in G. Then for
€>0,0<a<1/2 end m 2 max {4(K:1 + K3)/(o®e), K} /(a?e)},

P’“{EIQEG, %;‘%?za}

ae 3a%em
< i —_—
< i (F6.2m) e"p( 8K, +324Kg) +

ae a’em
aM (E-K—I,G,mn) exp (- e ) R

where B,g = LS 9(z) for 2= (21,...,2m).
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Restricted model

o If the conditional expectation E(y|z) € F, the rate of uniform
convergence is the same as the fast rate achieved by convex classes.

Theorem 20.10 Suppose that F is a class of functions that map to
the interval [0,1), A is an approzimate-SEM algorithm for F, L(z) =
A(z,1/m) for z € Z™, and the distribution P on X x R is such that
|f(z) — ¥| < B almost surely and E(y|z) is in F. Then

P {ep(2) > jug () + ¢}

< 04 (g Fo2m) xv () -



Chapter 21: Other Learning Problems

© Chapter 21: Other Learning Problems



Chapter 21: Other Learning Problems

Loss Functions in General

e We shall assume that the loss function [ maps to the interval [0, 1]. (ex:
Y €[0,1))

e Given a particular loss function [, we define, for f € F', the function
ly: X xY —[0,1] by

ly(z,y) = U(f(2),v),

and we let [p = {l; : f € F'} be the corresponding loss class.

e The [-error of f € F with repect to a distribution Pon Z = X x Y is
the expected value of [ with respect to P,

erb(f) = Ely = El(f(x),y),

and, for z € Z™, the [-sample error €r (f) is

m

R 1 1 —
ETZZ(f):EZZ 9317yz :EZZ :CZ yz
1=1

=1
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Convergence for General Loss Functions

Theorem 17.1 Suppose that F is a set of functions defined on a domain
X and mapping into the real interval [0,1). Let P be any probability
distribution on Z = X x [0,1], € any real number between 0 and 1, and
m any positive integer. Then

P™ {some f in F has lerp(f) — €r.(f)| > €}
< 4M (¢/16, F,2m) exp (—€m/32) .

Theorem 21.1 Suppose that F is a class of functions mapping into the
interval [0,1], and that £: [0,1) x Y — [0,1] is & loss function. Let P
be any probability distribution on Z = X xY, 0 < e < 1, and m any
positive integer. Then

pm {|er5,(h) — 6 (h)| > e for some h € F}

< 4M (g, !p,2m)exp (_E:»_‘;) .

Corollary 21.2 Let £ denote the absolute loss function. Then, for all
positive integers k and for all positive numbers e,

-N‘l (eifF)k) < M (C)Flk)'
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Learning in Multiple-Output Networks

e Suppose that F' maps from a set X into R® where s > 1.

o It would seem appropriate to use the loss function
I*: R®* x R®* — [0, 1], as follows:

o1 ,
ls(y,y)=gzl(yi,yi)-
=1

o For instance, [° measures the loss as the average quadratic loss over the

outputs,
S

/ 1 ’
Ik == i — )2,
(v,9) 5;(9 )
e Forl <s<sand f € F,let fi(x) = (f(x));, the ith entry of
f(z) eR®, andlet F; = {f;, : f € F'}.
e For f € F, wedefine Iy, : R x R®* — [0,1] by I, (x,y) = l(fi(z),y)
and we let [y, = {ly,, f € F'}.
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Learning in Multiple-Output Networks

Theorem 21.3 With the above notations,
Nl (Evl'j-";k) S Nl (éaan k)-’vl (e:th:k) v 'M (E,fF_,k)
8
HM (c, enFi‘l k):

=1

for all positive integers k and all € > 0.

Corollary 21.4 If £ is the quadratic loss function then
M&%HSAH R k)N (5, B k) oM (5, F,8)
HM (5.Fuk),

for all positive integers k and all € > 0. If £ is the absolute loss function,
then

N (6,85, k) < [I M (e, i k)

i=1

forall e and k.
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Theorem 21.5 Suppose that o feed-forward network N has W weights
and k computation units erranged in L layers, where s of these compu-
tation units are outpul units. Suppose that each computation unit has a
fized piecewi Iy ial activetion function with p pieces and degree
no more u‘uml LetF be the class of functions computed by N. Then
any approzimate-SEM algorithm for F can be used to define a learning
olgorithm for F, and for fized p and l, the sample complezity of this

algorithm is

0 (elz (s (WLInW + WL?)In (é) +In (-

Theorem 21.6 Consider the class of two-layer networks defined in
Corollary 14.16, but with s output units. These networks have inputs
in [-A, A]*, and each computation unit has @ bound V on the sum of

the magnitudes of the iated parameters, and an

function

that is bounded and satisfies a Lipschitz constraint. Let F' be the class

of vector-valued functions computed by this net

k. Any approzimate-

SEM algorithm can be used to define a learning algorithm L for F that

has sample complezity satisfying

mr(e,d) =0 (;2 (SV:‘AQ Inn+ln (;li))) .
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Interpolation Models

o In this section, we take a fresh approach to the question of how to
extend a basic learning model of Part I for binary classification to
models of learning applicable to real-valued function classes.

Theorem 4.8 Suppose that H is a set of functions from a set X to
{0,1} and that H has finite Vapnik-Chervonenkis dimension d > 1. Let
L be a consistent algorithm; that is, for any m and for any t € H, if
T € X™ and z is the training sample corresponding to © and t, then the
hypothesis h = L(z) satisfies h(z;) = t(z;) fori = 1,2,...,m. Then
L is a learning algorithm for H in the restricted model, with sample

complexity
w3 (2) o= )
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Interpolation Models

o Therefore, there is m(e, §) such that for m > m(e, §), for any

probability distribution y in X and any function ¢ € H, the following
holds:

P™ (for any function f such that f(z;) = t(z;) fori = 1,...,m,
p{f(z) =t(x)} >1—¢€) >1-0.

Real-valued problem

e We extend in two different ways the restricted model of learning for
{0, 1}-classes.

e Suppose ¢ is any function from X to [0, 1] (not necessarily in the class
F'), and p is a probability distribution on X.

e In real-valued problem, we replace the condition f(x) = t(x) to

[f(z) = t(z)] <.
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Interpolation Models

Definition 21.7 Suppose that F is a class of functions mapping from
a set X to the interval [0,1]. Then F strongly generalizes from approx-
imate interpolation if for any €,8,n € (0,1), there is mq(e,6,n) such
that for m > mol(e,8,n), for any probability distribution p in X aend
any function t : X — [0,1], the following holds: with probability at least
1-4, ifz = (21,%2,...,Zm) € X™, then for any f € F satisfying
|F(zs) = t{z;)| < 1 fori =1,2,...,m, we have

plz:|f@) -tz <n}>1-e

Definition 21.8 Suppose that F is o class of functions mapping from
a set X to the interval [0,1]. Then F generalizes from approximate
interpolation if for any €,6,n,v € (0,1), there is mqg(e,6,7,7) such that
for m > mo(e,8,7,7), for any probability distribution p in X and any
function t : X = [0,1], the following holds: with probability at least
1-4, ifz = (z1,22,...,2m) € X™, then for any [ € F -satisfying
|f(zi) = t{zg)] < fori=1,2,...,m, we have

ple:1fm) —ta) <n+7}>1-c
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Interpolation Models

Strong generalization from interpolation

Theorem 21.12

Suppose that F is a set of functions from o set X to [0,1). Then F
strongly generalizes from approzimate interpolation if and only if F has
finite pseudo-dimension. Furthermore, if F has finite pseudo-dimension
Pdim(F) then a sufficient sample length function for generalization from
approzimate interpolation is

moles8,m) = = (15Pdim(F) In (%) +In (%)) ,
and any suitable sample length function must satisfy

ma(e,é,m) 2 53; (1—;%(3 -1+6In (%))

foralln>0,e€(0,1/2) and b € (0,1).
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Interpolation Models

Generalization from interpolation

Theorem 21.14 Suppose that F is a class of functions mapping into
[0,1]. Then F generalizes from approzimate interpolation if and only if
F has finite fat-shattering dimension. Furthermore, there is a constant
¢ such that if F has finite fat-shattering dimension, then a sufficient
sample length for generalization from approzimate interpolation is

mo(e,8,7,7) = E (ln (%) + fatp (%) In® (ﬁ‘}:—/&)) -
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A result on large margin classification

o It is possible to use our results on generalization from approximate
interpolation to derive a result useful for a restricted form of the
classification learning model of Part 2.

e Recall that in this framework, for a probability distribution P on
X x {0, 1}, a positive number «, and f € F, we define

erp(f) = P{margin(f(z),y) <~}.
e In Chapter 10, we proved the following convergence result:

P™{some fin F has erp(f) > éer)(f) + €}

2
< 2N, (%,F, Qm) exp <_€;’l> .
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A result on large margin classification

Theorem 21.15 Suppose that F is a set of functions mapping from a
set X to[0,1), thett : X — {0,1}, and that p is a probability distribution
on X. Let+ € (0,1/2) and € € (0,1). For f € F, define er,(f,t) to be
iz : sgn(f(z) — 1/2) # t(z)}, the ervor incurred in using the function
f for binary classification. Let Pyay be the probability of z € X™ for
which some f € F has margin(f(z;),t(z)) > v for i = 1,...,m, but
er,(f,t) > €. Then Poag < 2Ny (7/2, F,2m) 27412,

o the above result is similar to this, but is more specialized in two ways:

e restricted model.
o ery(f) > eand er](f) = 0,noterp(f) > erl(f) +e.
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